

CE53L8XX - 400mA Ultra-Low Noise, High PSRR LDO

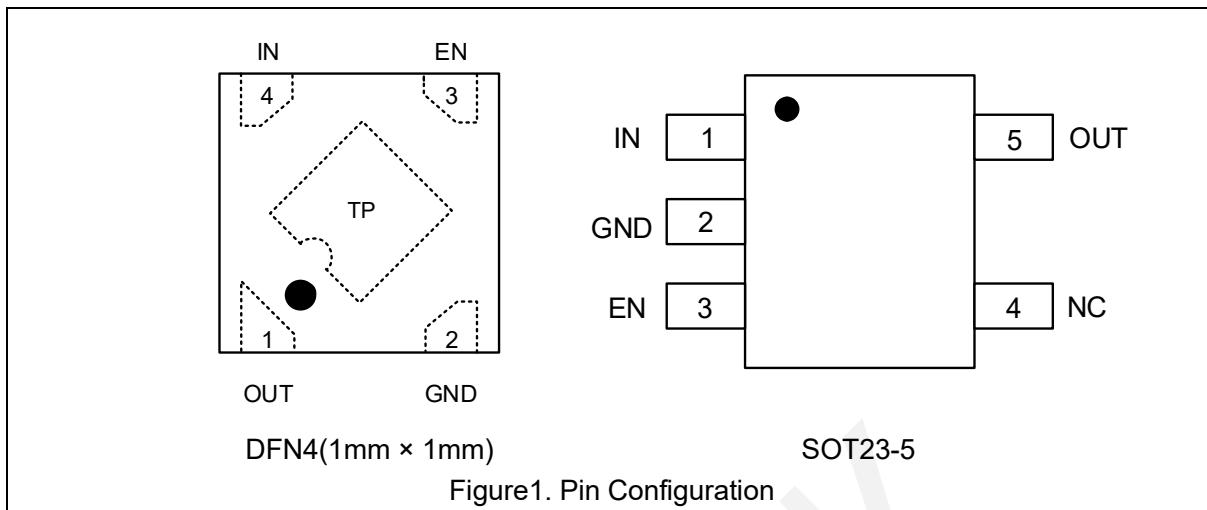
General Description

The CE53L8XX of low-dropout (LDO), low-power linear regulators offer up to 400mA with PMOS pass transistor. The device offers low noise, high PSRR, low quiescent current and very good line/load transients, suitable for RF applications and analog circuits.

The CE53L8XX is stable with a 1 μ F input and 1uF ceramic output capacitor, and uses a precision voltage reference and feedback loop to achieve accuracy of 1.5%.

It is in a small SOT23-5 and DFN4 package, which is ideal for small form factor portable equipment such as wireless handsets.

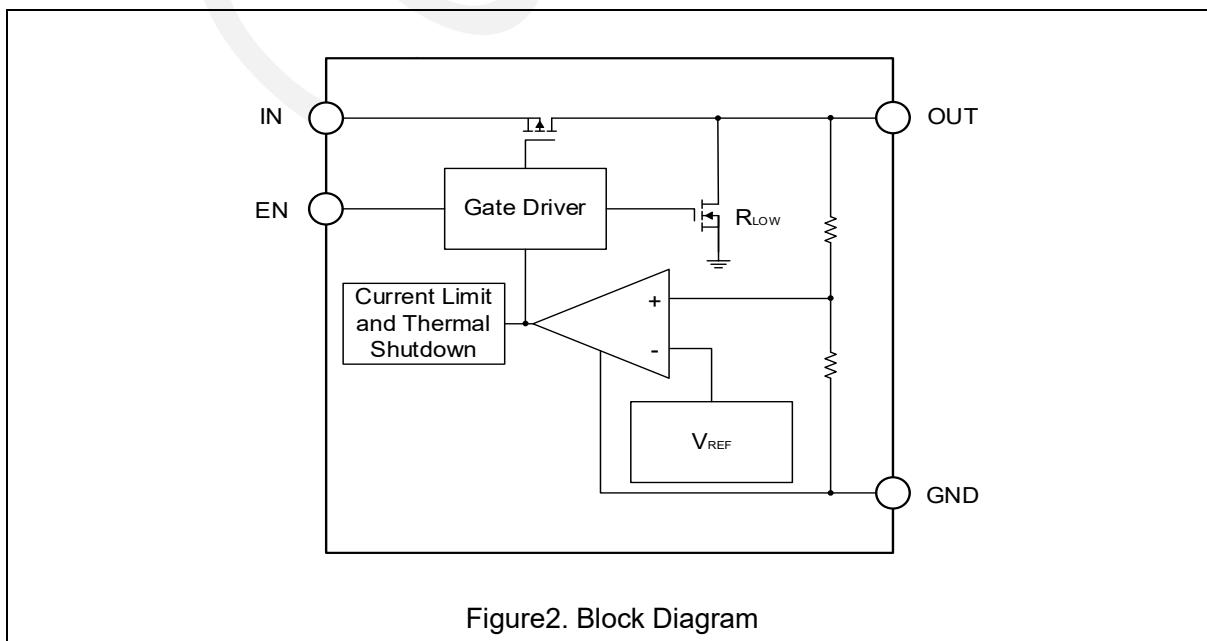
Features


- Wide Input Voltage Range from 2.2V~5.5V
- Fixed Voltage: 3.3V, 3.6V
- Output Voltage Accuracy are $\pm 1.5\%$
- Output Current are Up to 400mA
- Very Low I_Q of 20 μ A Typical
- Shutdown Current of 0.1uA Typical
- Low Dropout are Typical 150mV at 400mA, 3.3V Output
- Ultra Low Noise are Typical 8 μ V_{RMS} (Load = 200mA)
- Very High PSRR are 100dB at 1KHz, 45dB at 1MHz, 30mA
- Excellent Line/Load Transient Response
- With I_{LIMIT} Protection and Thermal Shutdown Circuit
- With Auto Discharge Function
- Part No. and Package Information

Part No.	Package	Packing Option	MSL
CE53L8XXYB	DFN4 (1mm × 1mm)	Tape and Reel, 10K/Reel	1
CE53L8XX	SOT23-5 (1.6mm × 2.9mm)	Tape and Reel, 3K/Reel	3

Applications

- Smart Phones and Cellular Phones
- PDAs
- Digital Still Cameras
- Portable Instrument


Pin Configuration

Pin Function

Pin No.		Pin Name	Pin Function
DFN4	SOT23-5		
1	5	OUT	Output Pin. A 1 μ F low-ESR capacitor should be connected to this pin to ground.
2	2	GND	Ground
3	3	EN	Enable Control Input, active high. Do not leave EN floating
4	1	IN	Supply Input Pin. Must be closely decoupled to GND with a 1 μ F or greater ceramic capacitor
TP		Thermal Pad	Thermal Pad for DFN4(1x1) Package, Connect to GND or Leave Floating. Do not connect to any potential other than GND.
	4	NC	No Connection.

Block Diagram

Functional Description

Input Capacitor

A 1 μ F ceramic capacitor is recommended to connect between IN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both IN and GND. The input capacitor should be at least equal to, or greater than, the output capacitor for good load transient performance.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from 1 μ F to 10 μ F, Equivalent Series Resistance (ESR) is from 5m Ω to 100m Ω , and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins. With a reasonable PCB layout, the single 1 μ F ceramic output capacitor can be placed up to 10cm away from the CE53L8XX device.

Remote Output Capacitor Placement

The CE53L8XX requires at least a 1 μ F capacitor at the OUT pin, but there are no strict requirements about the location of the capacitor in regards the OUT pin. In practical designs, the output capacitor may be located up to 10cm away from the LDO.

ON/OFF Input Operation

The CE53L8XX is turned on by setting the EN pin higher than VIH threshold, and is turned off by pulling it lower than VIL threshold. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

Low Quiescent Current

The CE53L8XX, consuming only 20 μ A quiescent current, provides great power saving in portable and low power applications.

High PSRR and Low Noise

The CE53L8XX, with PSRR of 100dB at 1KHz,30mA is suitable for most of these applications that require high PSRR and low noise.

Fast Transient Response

The CE53L8XX's fast transient response from 0 to 400mA provides stable voltage supply for fast DSP and GSM chipset with fast changing load.

Dropout Voltage

Generally speaking, the dropout voltage often refers to the voltage difference between the input and output voltage. The CE53L8XX internal circuitry is not fully functional until V_{IN} is at least 2.2V. The output voltage is not regulated until V_{IN} has reached at least the greater of 2.2V or ($V_{OUT} + V_{DROP}$).

Current Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin is short-circuiting to GND, the current limit protection will be triggered and clamp the output current to approximately 650mA to prevent over-current and to protect the regulator from damage due to overheating.

Output Automatic Discharge

The CE53L8XX output employs an internal 350Ω (Typical) pull-down resistance to discharge the output when the EN pin is low, and the device is disabled.

Thermal Overload Protection

Thermal shutdown disables the output when the junction temperature rises to approximately 150°C which allows the device to cool. When the junction temperature cools to approximately 120°C , the output circuitry enables. Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a result of overheating.

The thermal shutdown circuitry of the CE53L8XX has been designed to protect against temporary thermal overload conditions. The TSD circuitry was not intended to replace proper heat-sinking. Continuously running the CE53L8XX device into thermal shutdown may degrade device reliability

Absolute Maximum Ratings

Symbol	Parameters (Items)		Value	Unit
V_{IN}	Input Voltage (IN Pin)		-0.3 to 6.5	V
V_{EN}	Input Voltage (EN Pin)		-0.3 to 6.5	V
V_{OUT}	Output Voltage (OUT Pin)		-0.3 to $V_{IN} + 0.3$	V
P_{D_MAX}	Maximum Power Consumption		500	mW
I_{MAX}	Maximum Load Current		400	mA
T_J	Operating Junction Temperature		-40 to 150	°C
T_{STG}	Storage Temperature		-65 to 150	°C
T_{SLOD}	Lead Temperature (Soldering, 10 sec)		260	°C
V_{ESD} ⁽¹⁾	ESD Classification	Human Body Model	±4000	V
		Charged Device Model	±1500	V
I_{LU} ⁽¹⁾	Latch Up Current Maximum Rating		±200	mA

Note2: This device series incorporates ESD protection and is tested by the following methods:

HBM tested per JEDEC JS-001;

CDM tested per JEDEC JS-002;

Latch up Current Maximum Rating tested per JEDEC JESD78F.

Recommended Operating Conditions

Symbol	Parameters	Rating	Unit
V_{IN} ⁽²⁾	Input Voltage	2.2 to 5.5	V
V_{OUT}	Output Voltage	1.2 to 4.3	V
I_{OUT}	Output Current	0 to 400	mA
T_A	Operating Ambient Temperature	-40 to 85	°C
C_{IN}	Effective Input Ceramic Capacitor Value	0.68 to 10	µF
C_{OUT}	Effective Output Ceramic Capacitor Value	0.68 to 10	µF
ESR	Input and Output Capacitor Equivalent Series Resistance	5 to 100	mΩ

Note3: In order to achieve high performance of PSRR, it is recommended that the V_{IN} needs to be no smaller than $(V_{OUT} + 0.5V)$.

Electrical Characteristics

($V_{IN} = V_{OUT} + 1V$, $V_{EN} = 1.2V$, $I_{OUT} = 1mA$, $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$. $T_A = 25^\circ C$, unless otherwise noted)

Symbol	Parameters	Conditions	Min	Typ	Max	Unit
V_{IN}	Input Voltage Range ⁽³⁾		2.2		5.5	V
V_{UVLO}	Under Voltage Lockout	V_{IN} Rising	1.8	2.0	2.2	V
		V_{IN} Falling	1.7	1.9	2.1	V
I_{Q_ON}	Input Quiescent Current	$I_{OUT} = 0mA$		20	40	uA
I_{Q_OFF}	Input Shutdown Quiescent Current	$V_{EN} = 0V$		0.1	1	uA
V_{OUT}	Output Voltage Accuracy	$V_{IN} = V_{OUT(NOM)} + 1V$, $I_{OUT} = 1mA$, $T_A = -40^\circ C < T_A < 85^\circ C$	-1.5		1.5	%
Reg_{LINE}	Line Regulation	$V_{IN} = V_{OUT} + 1V$ to $5.5V$, $I_{OUT} = 1mA$		0.01	0.1	%/V
Reg_{LOAD}	Load Regulation	$I_{OUT} = 1mA$ to $400mA$		20	40	mV
V_{DROP}	Dropout Voltage ⁽⁴⁾	$V_{OUT} = 3.3V$, $I_{OUT} = 400mA$		150	230	mV
		$V_{OUT} = 3.6V$, $I_{OUT} = 400mA$		140	220	mV
I_{OUT}	Output Current		400			mA
I_{LIMIT}	Current Limit	$T_A = 25^\circ C$	450	650	850	mA
I_{SHORT}	Short Current Limit	$V_{OUT} = 0V$, $T_A = 25^\circ C$	50	140	260	mA
$PSRR$	Power Supply Rejection Ratio ⁽⁵⁾	$f = 100Hz$, $I_{OUT} = 30mA$		90		dB
		$f = 1kHz$, $I_{OUT} = 30mA$		100		dB
		$f = 100kHz$, $I_{OUT} = 30mA$		65		dB
		$f = 1MHz$, $I_{OUT} = 30mA$		45		dB
e_N	Output Noise Voltage ⁽⁵⁾	$BW = 10Hz$ to $100kHz$, $I_{OUT} = 10mA$		9		μV_{RMS}
		$BW = 10Hz$ to $100kHz$, $I_{OUT} = 200mA$		8		μV_{RMS}
V_{IH}	EN Low Threshold	$V_{IN} = 2.2V$ to $5.5V$	0.84			V
V_{IL}	EN High Threshold	$V_{IN} = 2.2V$ to $5.5V$			0.40	V
I_{EN}	EN Input current	$V_{EN} = 0V$ to $5.5V$		0.5	1	uA
V_{TRLN}	Line Transient ⁽⁵⁾	$V_{IN} = (V_{OUT} + 1V)$ to $(V_{OUT} + 2V)$ in $10\mu s$		5	20	mV
		$V_{IN} = (V_{OUT} + 2V)$ to $(V_{OUT} + 1V)$ in $10\mu s$		5	20	mV
V_{TRLD}	Load Transient ⁽⁵⁾	$I_{OUT} = 1mA$ to $400mA$ in $10\mu s$		25	60	mV
		$I_{OUT} = 400mA$ to $1mA$ in $10\mu s$		20	45	mV
R_{LOW}	Output Discharge FET $R_{ds(on)}$	$V_{EN} = 0V$, $V_{IN} = 5V$, $I_{OUT} = 10mA$	200	350	500	Ω
t_{ON}	Output Turn-on Time	From $V_{EN} > V_{ENH}$ to $V_{OUT} = 95\%$ of $V_{OUT(NOM)}$		500		us
T_{TSD}	Thermal Shutdown Threshold ⁽⁵⁾	T_J Rising		150		$^\circ C$
T_{HYS}	Thermal Shutdown Hysteresis ⁽⁵⁾	T_J Falling from Shutdown		30		$^\circ C$

Note3: The maximum input voltage should take into account the maximum power consumption

(P_{D_MAX}).

The calculation formula is as follows:

$$P_{D(MAX)} = (V_{IN(MAX)} - V_{OUT}) \times I_{OUT}$$

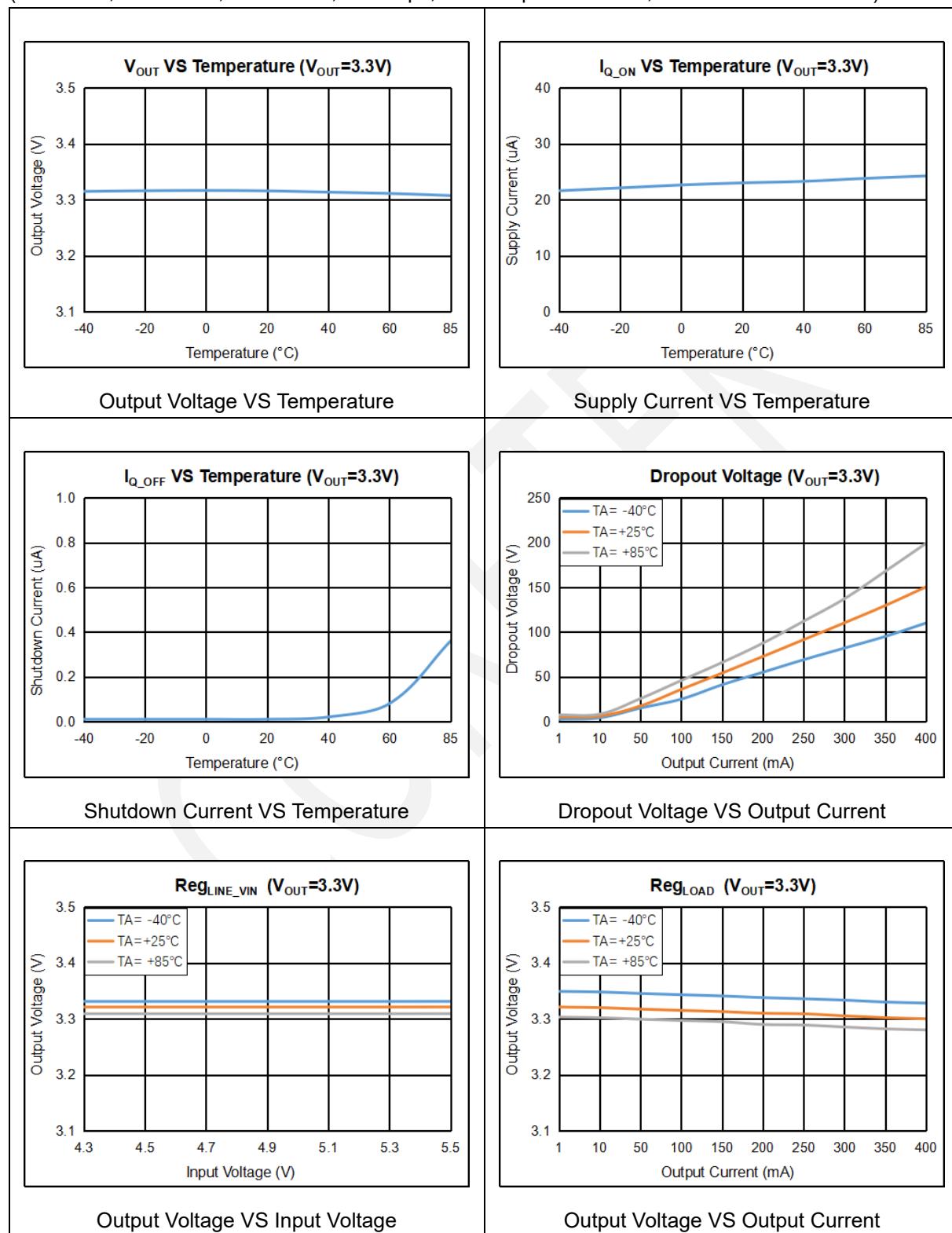
The maximum power consumption of the circuit is 500mW.

$$V_{IN(MAX)} = 500mW / I_{OUT} + V_{OUT}$$

For example:

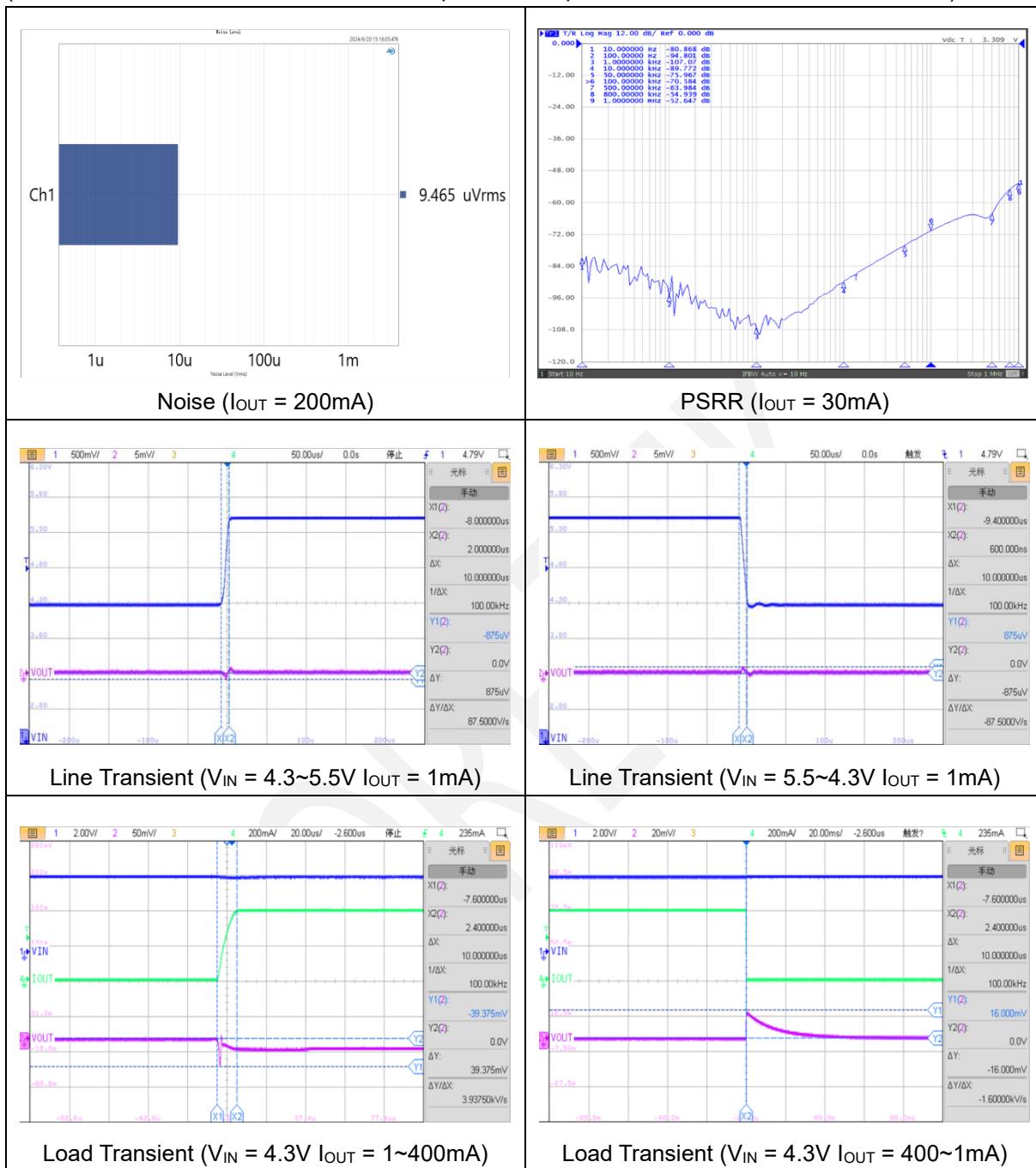
If $V_{OUT} = 1.2V$, $I_{OUT} = 400mA$, the maximum input voltage is

$$V_{IN(MAX)} = 500mW / 400mA + 1.2V = 2.45V$$


Note4: V_{DROP} FT test method: test the V_{OUT} voltage at $V_{SET} + V_{DROPMAX}$ with output current.

Note5: Guaranteed by design and characterization. Not a FT item.

Typical Characteristics


VOLTAGE VERSION 3.3V

($V_{IN} = 4.3V$, $V_{EN} = 1.2V$, $I_{OUT} = 1mA$, $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $T_A = 25^\circ C$, unless otherwise noted)

Typical Characteristics (Continued)

($V_{IN} = 4.3V$, $V_{EN} = 1.2V$, $I_{OUT} = 1mA$, $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $T_A = 25^\circ C$, unless otherwise noted)

Application Circuits

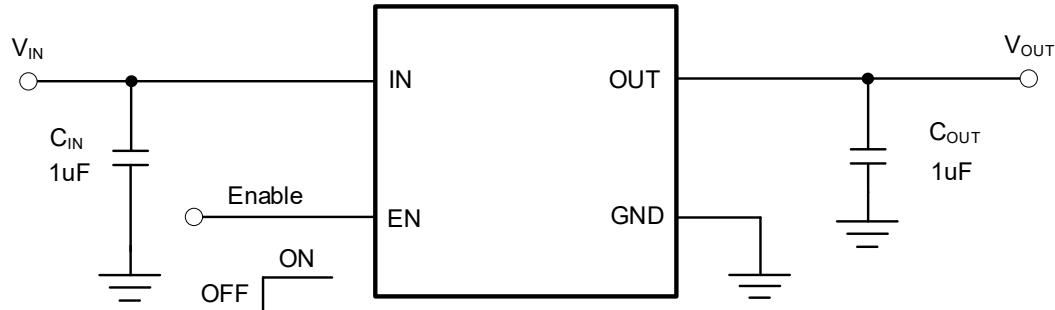


Figure3. Application Circuits

PCB Layout Guide

DFN4 (1mm × 1mm)

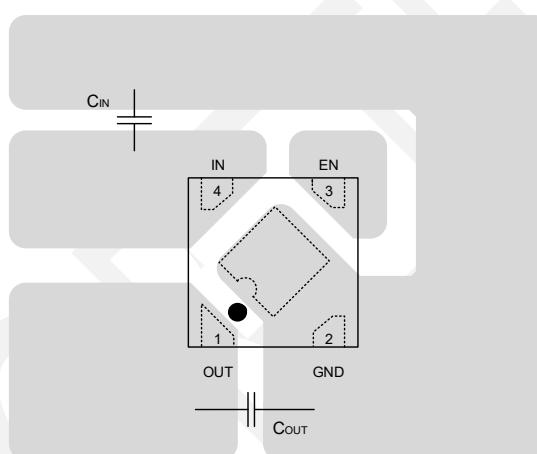
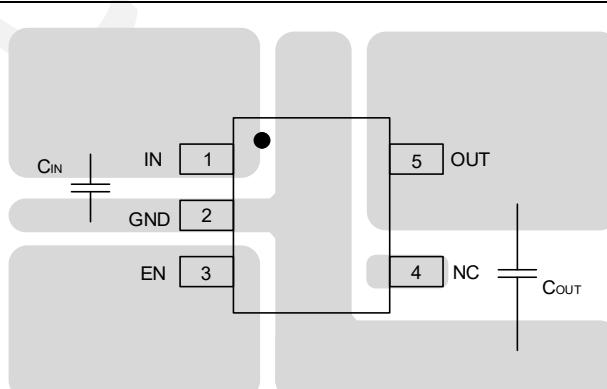
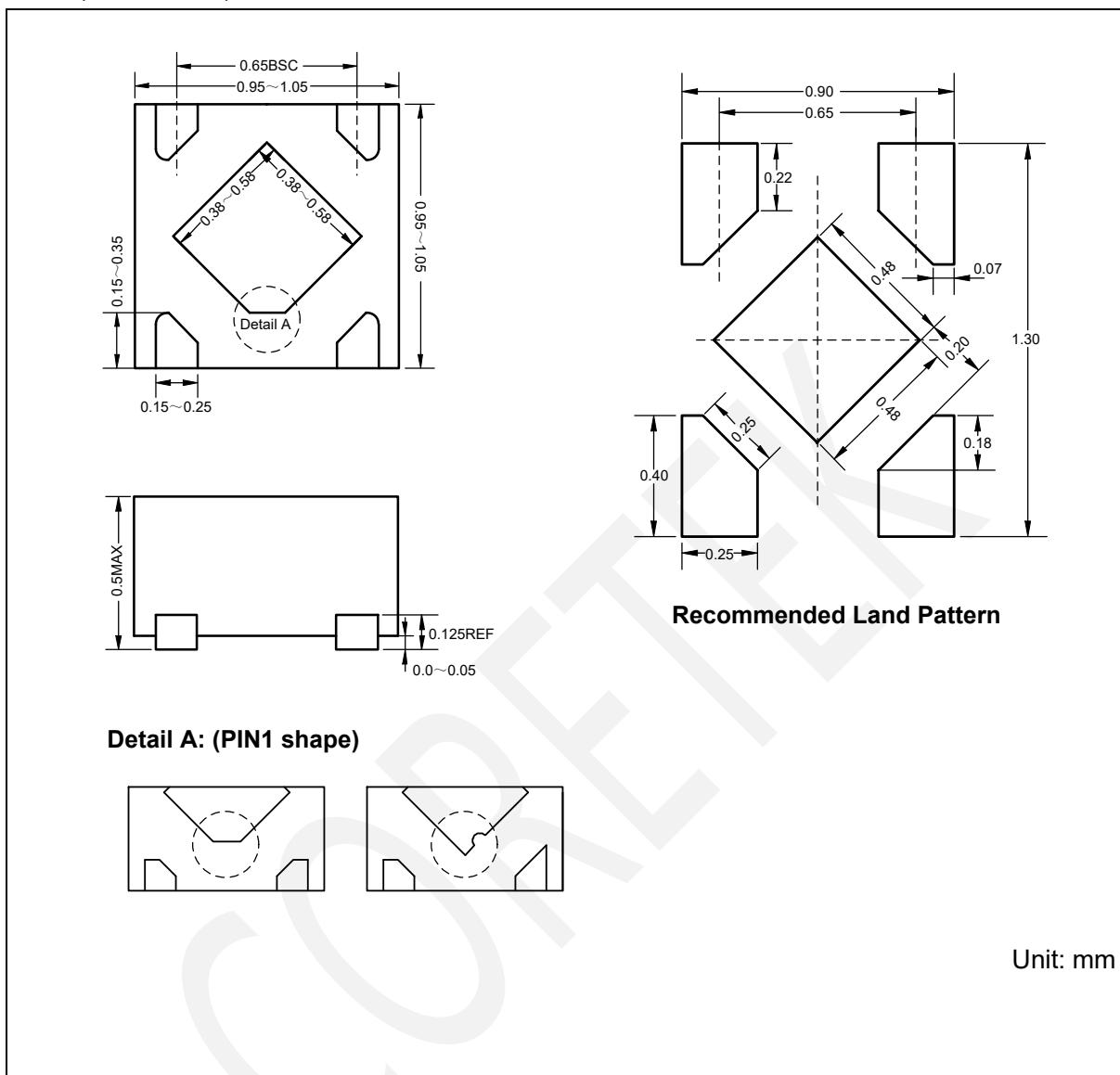
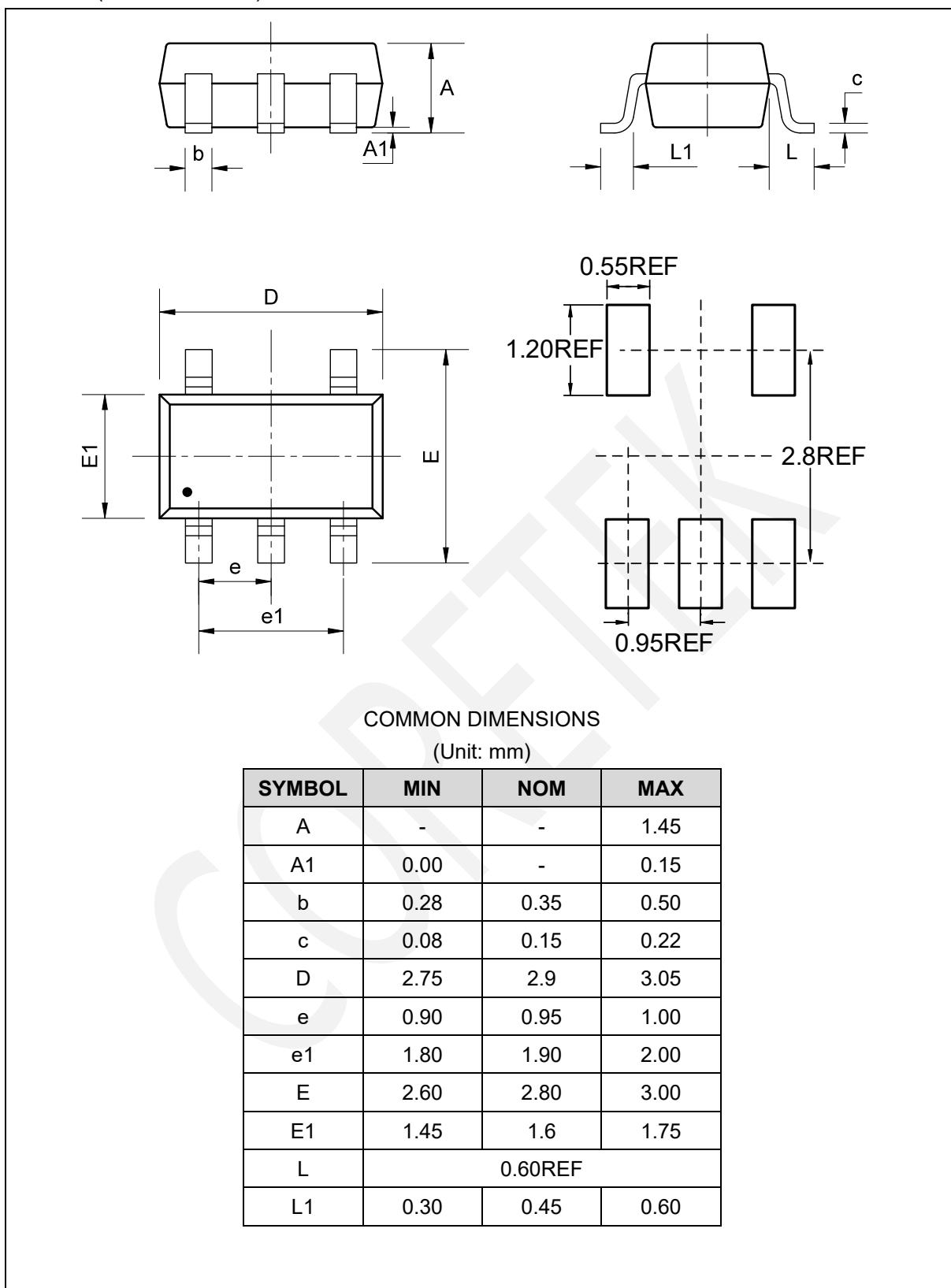


Figure4. PCB Layout Guide of DFN4

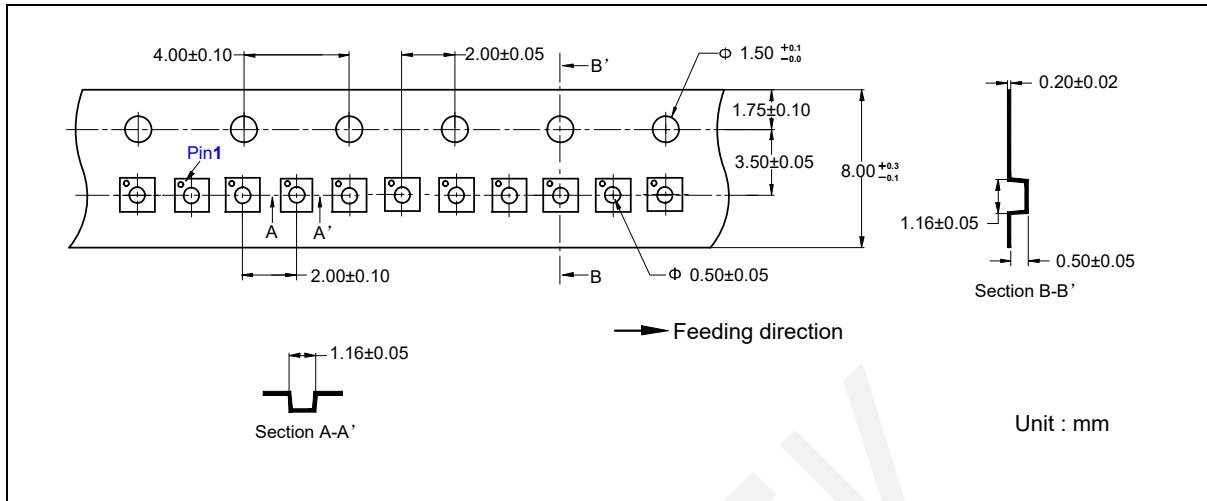
SOT23-5 (1.6mm × 2.9mm)

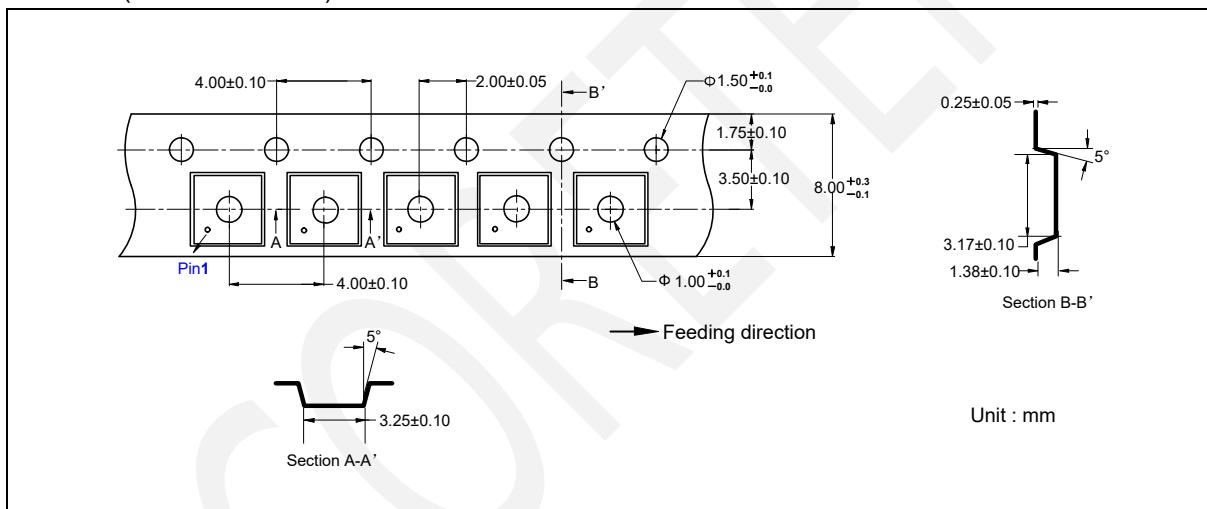

Figure5. PCB Layout Guide of SOT23-5

Package Dimension

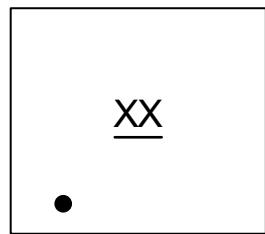
DFN4 (1mm x 1mm)



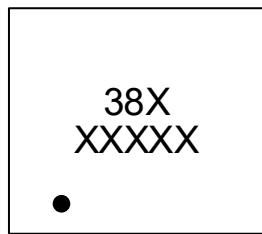
SOT23-5 (1.6mm x 2.9mm)



Tape Information


DFN4 (1mm x 1mm)

SOT23-5 (1.6mm x 2.9mm)



Marking Information

DFN4

$\underline{X}^{(1)}$ = Tracking Number
 $\underline{X}^{(2)}$ = Output Version

SOT23-5

X = Output Version
XXXXX = Tracking Number

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2024-01-02	Preliminary Version	Li huan	Liu yihuo	Liu jiaying
1.0	2025-10-17	Official Version	Yang xiaoxu	Li huan	Liu jiaying